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Abstract 

The diffracting particles that give rise to a fiber diffrac- 
tion pattern are randomly oriented about the fiber 
axis and, in consequence, the diffraction pattern is 
cylindrically averaged. The phase problem in fiber 
diffraction is not only to determine the phase in the 
usual crystallographic sense, but to overcome the loss 
of information from this averaging. This has been 
done by a multi-dimensional analog of protein crys- 
tallographic isomorphous replacement, combined 
with the use of information from the fine splitting of 
layer lines that occurs when a helical structure repeats 
approximately, but not exactly, in a given number of 
turns. The phases thus determined have been refined 
by a solvent-flattening procedure. They have been 
further refined by assuming the separation of cylindri- 
cally averaged Bessel-order terms (from multi- 
dimensional isomorphous replacement at an early 
stage and from a model at a later stage) and applying 
conventional isomorphous replacement (two- 
dimensional isomorphous replacement) to determine 
the phases of the terms. Cycles of model building and 
two-dimensional isomorphous replacement were 
found in the case of tobacco mosaic virus to improve 
greatly the quality of the electron density map, and 
enabled an atomic model of the virus to be built based 
on a highly interpretable map at 3.6/~ resolution with 
five Bessel orders (terms overlapping because of 
cylindrical averaging) separated. 

Introduction 

1. The phase problem in fiber diffraction 

The phase problem in fiber diffraction is inherently 
more complicated than the phase problem in crystal- 
lography. In a crystal, the diffracting units all have 
the same orientation, but in a typical fiber diffraction 
experiment, although the diffracting particles are all 
oriented parallel to an axis, they are randomly orien- 
ted about that axis. For example, tobacco mosaic 
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virus (TMV) particles, which are rod shaped, may be 
drawn into a capillary tube in a gel, 20-30% virus by 
weight, and by suitable manipulation (Gregory & 
Holmes, 1965) induced to line up with their long axes 
parallel to the capillary axis. However, they are ran- 
domly oriented about these axes. 

The effect of this random orientation is to average 
the diffraction pattern cylindrically. The diffracted 
intensity at reciprocal-space radius R on layer line l, 
I(R, 1), is then 

I (R, l) = Z G,a(R)G*a(R) ( 1 ) 
n 

(Waser, 1955; Franklin & Klug, 1955). G is a complex 
Fourier-Bessel structure factor (Klug, Crick & Wyck- 
off, 1958), and the phase problem in fiber diffraction 
is to determine not only the phase of each G, but also 
the decomposition of I into {G}. 

2. The number of  terms to be separated 

For a given R, the sum in (1) contains only a finite 
number of significant terms, the number depending 
on the maximum radius and the symmetry of the 
diffracting system. If the diffracting structure is a helix 
with u identical subunits in t turns, where u and t 
are integers, the terms contributing to the sum are 
restricted to values of n and ! that satisfy the selection 
rule 

1 = tn + urn, 

where m is integral (Cochran, Crick & Vand, 1952). 
Each G,,t is a function of the Bessel function J,: 

G,,.,( R ) = Y fJ,(2"trRr~) exp i(-n~oj + 2~lzJ  c). (2) 
J 

(rj, ~oj and zi are the cylindrical coordinates of atom 
L which has a scattering factor fj, and c is the length 
of the repeating unit of the structure in the z direc- 
tion.) The finite radius of the diffracting structure and 
the fact that a Bessel function has an insignificant 
value until the argument approaches the order com- 
bine to restrict the number of terms in (1). 
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For tobacco mosaic virus at 10/~ resolution, each 
layer line contains one or two significant G terms. At 
3.6/~, there are up to five, although only the outer 
parts of the structure contribute to the fifth term. For 
comparison, the filamentous bacteriophage pfl has 
four overlapping terms in its diffraction pattern at 
3.6 A resolution (Makowski, Caspar & Marvin, 1980) 
whereas microtubules, with much lower symmetry, 
already have five overlapping terms at only 25 
resolution (Beese, Stubbs & Cohen, 1985). It is poss- 
ible to ignore the contributions of some of the higher- 
order terms, but there is a consequent loss of reso- 
lution, particularly in the outer parts of the structure. 

3. The phase problem for TMV 

Tobacco mosaic virus has served as the archetypal 
test system in the search for solutions to the fiber 
diffraction phase problem. At 10 A, it is possible to 
neglect the second G term and assume overlap is not 
present, and this enabled Barrett et al. (1971) to 
calculate an electron density map using isomorphous 
replacement as it is usually applied in protein crystal- 
lography. Holmes, Stubbs, Mandelkow & Gallwitz 
(1975) used an extension of isomorphous replacement 
into multiple dimensions (Stubbs & Diamond, 1975) 
to separate two Bessel orders (G terms) and calculate 
a 6.7/~ map. This work was extended to 4/1, and 
three Bessel orders by Stubbs, Warren & Holmes 
(1977). 

Multi-dimensional isomorphous replacement is in 
many ways analogous to conventional protein crys- 
tallographic isomorphous replacement, but instead 
of two unknowns (the real and imaginary parts of 
the structure factor), there are 2n unknowns: the real 
and imaginary parts of each of n significant G terms 
contributing to the intensity. Consequently, large 
numbers of heavy-atom derivatives are required; at 
least two for each term to be separated. Stubbs & 
Makowski (1982) showed that the fine splitting of 
layer lines could be used to increase the amount  of 
phase information available from each derivative, 
substantially increasing the resolution attainable with 
a limited number of derivatives. As an example, they 
calculated a 6.7/~ map of TMV using data from only 
two derivatives. (To calculate such a map by multi- 
dimensional isomorphous replacement alone would 
have required four derivatives.) In this paper, we 
present the methods, including multi-dimensional 
isomorphous replacement and layer-line splitting, 
that we have used in the calculation of a map of TMV 
at 3.6 A, resolution, considering contributions from 
up to five Bessel orders. This is not only an extension 
of the resolution of the 4/~ map;  it is a major improve- 
ment over that map because it has not been necessary 
to neglect the contribution of any significant Bessei 
order. 

Data collection 

1. Diffraction patterns 

Data were collected for TMV and the six heavy- 
atom derivatives described by Stubbs, Warren & 
Holmes (1977). Diffraction patterns were recorded 
photographically on Ilford Industrial G or Kodirex 
film in a Guinier camera using a point-focused beam 
from two bent quartz or germanium crystals and an 
Elliot rotating-anode generator (GX6 or GX13). 
Because of the convergence of the beam in this system, 
not more than two films were used in a pack, and a 
complete data set required data from at least two 
exposures. The films were scanned with an Optronics 
Photoscan densitometer, using a 50 I~m raster. 

2. Determination of intensities 

The diffraction patterns obtained were of the type 
shown in Fig. 1. They consist of layer lines, and at 
high resolution these layer lines spread into each 
other. To obtain reliable estimates of intensities and 
layer-line positions from such patterns, the method 
of angular deconvolution (Makowski, 1978) was 
used, but modified in two ways. Firstly, the data were 
transformed from film space into reciprocal space 
(Fraser, Macrae, Miller & Rowlands, 1976) and cor- 
rected for non-linearity of film response and 
geometric factors before deconvolution. The assump- 
tion that all layer lines have the same angular cross 

| 1  

Fig. 1. Diffraction patterns from an oriented gel of tobacco mosaic 
virus, taken using flat film and a double-mirror focusing system. 
This unusually well oriented specimen was prepared in 1960 by 
K. C. Holmes and D. L. D. Caspar in Dr Caspar's laboratory. 
The pattern was recorded at the Rosentiel Center, Brandeis 
University, in 1982. 
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section (in most cases, a Gaussian) holds much better 
in reciprocal space. Secondly, in the rare cases where 
the predicted cross section was not accurate, such as 
the very near-meridional parts of layer lines 3 and 6, 
numerical integration was used. In order to monitor 
continuously the quality of the deconvolution and to 
make decisions about such factors as background 
shape and numerical integration, an interactive dis- 
play was incorporated into the angular deconvolution 
program. 

Determination of the background shape is an essen- 
tial part of angular deconvolution. We generally used 
a background with circular symmetry. The transfor- 
mation from Guinier film space to reciprocal space 
would produce a variable background from that part 
of the background attributable to the film fog, so the 
fog was estimated from an unexposed part of the film 
and subtracted before the transformation. X-rays 
scattered from slits occasionally produce a streak 
along the meridian, but this could be sufficiently well 
approximated by a Gaussian of appropriate width 
added to the constant background term. (Such an 
added term can only be used in angular deconvolution 
if its width is of a different order of magnitude from 
the layer-line width.) The possibility of using extra 
terms in the background, for example a Fourier series 
(Makowski, 1978) was considered, but with these 
terms present near-equatorial intensities were often 
underestimated (as judged from regions where the 
intensity of one or more layer lines was fortuitously 
low), and it appeared that the errors thus introduced 
were significantly larger than the very small errors 
the procedure was intended to correct. 

Intensities were corrected for polarization effects 
after deconvolution. 

3. Scaling 

Films in a data set were scaled together after averag- 
ing the quadrants, using a Fourier surface whose 
coefficients (usually for five orders) were determined 
by least-squares methods (Weissman, Stauffacher & 
Eisenberg, 1985). R factors (on I ~/2) between the two 
strongest films were usually about 5%. 

Derivative data sets were initially scaled to the 
native data set in the same way, with R factors varying 
from 10 to 20%. These data were then divided by 0.9, 
thus making some allowance for the heavy-atom scat- 
tering. Any local scaling procedure risks partial 
removal of the heavy-atom signal and, although this 
is considered in choosing the number of coefficients 
to describe the scaling surface, tests with simulated 
data sets showed that it was not possible to eliminate 
systematic errors in scaling due to the heavy atom 
contribution. To correct this problem, the data sets 
were rescaled after model building had begun (see 
below), using the current best estimate of the phases, 
and taking the calculated heavy-atom contribution 
into consideration. 

Methods used in phase determination 

This section will describe the methods used and re- 
ferred to in later sections to determine preliminary 
phases, to improve these phases, and to refine heavy- 
atom parameters for use in phase determination. Note 
that where no confusion can arise, the word "phase' 
is used to refer to the division of intensity into 
orthogonal parts, that is, the real and imaginary parts 
of each G. 

1. Phase determination 

(a) Isomorphous replacement with layer-line split- 
ting. Equation (1) may be rewritten 

2N 
6 =  ~ (A,+aj.,) 2. (3) 

i=l 

Here,/ j  is the intensity at a given (R, 1) for derivative 
j. N is the number of significant G terms contributing 
to the intensity at this (R, l), A, is a real or imaginary 
part of Gn, t(R) for the native diffracted intensity, and 
aj.~ is the heavy-atom contribution to that part of 
G,.t(R) (zero in the case of the native). An indepen- 
dent equation of this type is available from each 
derivative, and from the native. 

When the apparent repeat distance of the scattering 
particles (reflected in the layer-line spacing) corre- 
sponds only to an approximate repeat, the exact 
repeat distance being much longer (for example, in 
TMV there are actually 49.02 subunits in 3 turns, not 
49), the Bessel function terms in each layer line do 
not fall at exactly the same values of Z in reciprocal 
space, that is, the layer line is split (Franklin & Klug, 
1955). Because of disorientation and the finite thick- 
ness of layer lines, the splitting as such is not seen, 
but its effect is to cause very small shifts in the 
apparent position of the layer line, depending on the 
relative magnitudes of the contributing terms. These 
shifts are measured in the angular deconvolution, and 
used in the equation 

2N 
~gj[j = E cb¢~(A~ + mj, i) 2, (4)  

i=1 

where q~j is the angular shift observed for derivative 
j, ¢~ is the calculated shift for the term corresponding 
to A~, and qj is the ratio of the degree of splitting in 
derivative j to that in the native (Stubbs & Makowski, 
1982). An equation of this type is available from each 
data set for which specimen orientation is good 
enough to determine q~j reliably, and these equations 
are independent of (3). 

The phase problem in this case is to determine {A;}. 
We used linear equations derived from (3) and (4) 
to obtain a preliminary solution (Stubbs & Makowski, 
1982), but we then used (3) and (4) directly to refine 
this solution. We made this change from the method 
of Stubbs & Makowski because of the difficulty of 
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assigning relative weights to the linear and non-linear 
equations, but the change was found to have little 
effect on the solution. We used a steepest-descents 
procedure to minimize the errors in (3) and (4). In 
this way, up to five Bessel-order terms were separated 
and phased, using intensities from six derivatives and 
splitting from four. 

( b ) Improvement of the phase of each Bessel-order 
term. After the steepest-descents procedure had been 
completed, a further phasing step was found empiri- 
cally to improve the quality of the electron density 
maps, as judged by interpretability and chain con- 
tinuity. Although it is not practical to search all of 
n-dimensional space (n-< 10 in this case) to find the 
{Ai} that minimizes the least-squares residual, a pa r - ,  
tial search was made by taking as fixed the values o f "  
GG* (that is, the 'intensity' from each Bessel order) 
determined in the previous step, and determining the 
phase for each G term by the standard protein crys- 
tallographic procedure (see, for example, Blundell & 
Johnson, 1976, pp. 363-371). G was calculated for 
each derivative by taking the value of G for the native 
as determined in the previous step, and adding the 
heavy-atom contribution. This calculated {G} was 
normalized so that ~ GG* was equal to the observed 
derivative intensity. Since this two-dimensional prob- 
lem is significantly over-determined by the intensity 
data from six derivatives, layer-line splitting data were 
not used in this step. Phases determined in this way 
could be most probable phases (which were used 
during the refinement of heavy-atom parameters) or 
best phases (used for  calculating maps). Figures of 
merit were also available, and although it must be 
pointed out that these figures of merit do not have 
exactly the same meaning as those in crystallography, 
since they take no direct account of errors in the 
decomposition of I into {G}, they do reflect the 

qual i ty  of the phase determination at each point in 
the diffraction pattern. This procedure will be referred 
to below as 'two-dimensional isomorphous re- 
placement'. 

It is not completely clear why this procedure should 
improve the maps, but the most likely possibilities 
are that the steepest-descents procedure may lead to 
false or incompletely determined minima, and that it 
is difficult to weight correctly the effect of layer-line 
splitting on the phase. For example, at high values 
of R near the equator, splitting data are less reliable 
than intensity data, and two-dimensional isomor- 
phous replacement using intensity data alone some- 
what reduces the dependency of the phase on these 
data. 

2. Phase refinement 

The phases determined by isomorphous replace- 
ment and layer-line splitting inevitably contain errors 
due to imperfect heavy-atom positions, scaling and 

other factors. Extra information about the structure 
can be used to constrain and thus improve these 
phases. In protein crystallography, real-space averag- 
ing of the electron density of molecules related by 
non-crystallographic symmetry and flattening of the 
electron density in solvent regions have been shown 
to improve phases greatly in suitable cases (for 
example, Bloomer, Champness, Bricogne, Staden & 
Klug 1978; Harrison, Olson, Schutt, Winkler & 
Bricogne 1978). Two related methods of phase refine- 
ment were used in this work, both analogous to the 
protein crystallographic solveni-flattening procedure 
(as used, for example, by Wang, 1985; Phillips, 
Lattman, Cummins, Lee & Cohen 1979). 

(a) Box-function refinement. In this procedure 
(Makowski, 1981, 1982), the electron density map 
[or, in practice, the Fourier-Bessel components g,.i (r) 
of the map] is truncated, that is, multiplied by a box, 
at the known outer radius of the particle. It is then 
Fourier-Bessel transformed to give {G},  the 
decomposition of I and the phases of this {G} are 
applied to the observed intensities, and a back trans- 
formation gives a new model. Two or three cycles of 
this process usually suffice for convergence. This 
method of refinement is equivalent to imposing the 
constraint that the orthogonal parts {Ai} be con- 
tinuous, that is, that the frequency of these fluctu- 
ations is bounded, in accordance with the 'minimum 
wavelength' principle (Bragg & Perutz, 1952). 

(b) Solvent flattening. Box-function phase refine- 
ment is a solvent-flattening procedure, which has been 
useful in fiber diffraction, but since the cylindrical 
box is a very rough definition of the molecular boun- 
dary, the constraint on the phase is weaker than a 
more complete solvent flattening would be. Further- 
more, in the box-function refinement each layer line 
is refined independently, so if one layer line refines 
to a wrong phase set, no amount of improvement of 
the other layer lines will correct it. We therefore used 
a full solvent-flattening procedure at this point. 

Solvent flattening requires three steps: definition 
of a molecular boundary, modification of electron 
density outside (and sometimes inside) this boundary, 
and refinement of the phases on the basis of this 
modified density. Our procedure for defining the 
molecular boundary is basically the same as that of 
Wang (1985). Electron densities lower than some 
selected (usually small positive) contour value are set 
to zero, and densities are locally averaged to make a 
lower-resolution representation of the molecular 
density. This local averaging can be done in various 
ways; our procedure was to transform the map to 
reciprocal space and then back transform it using an 
artificial temperature factor of 300 A2. The molecular 
boundary is then defined as some contour, still posi- 
tive but lower than the first one used. The values for 
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initial contouring and for drawing the boundary are 
subjectively judged by comparing the boundary with 
the original map. 

Electron density outside the boundary is set to zero, 
and any deep holes, such as sometimes occur at 
heavy-atom sites, are truncated to some moderate 
depth. The refinement then proceeds analogously to 
box-function refinement: the modified map is trans- 
formed, the calculated phases are assigned to the 
observed diffracted intensities and the electron 
density is again calculated. Two cycles of the pro- 
cedure (without recalculating the boundary) are 
usually enough to obtain convergence. 

Although this refinement is similar to box-function 
refinement, it requires more than three times as much 
computer time, so it was not used in the heavy-atom 
parameter refinement described below. However, it 
imposes a considerably stronger constraint on the 
phases, and inspection of the maps thus produced 
suggested that its use at a later stage improved the 
phases significantly. 

( c ) Combination of phasing methods. Sire weighting. 
In the last step of the phase determination (see below) 
the phase probabilities from two-dimensional isomor- 
phous replacement were combined with probabilities 
based on the solvent-flattening refined map, using a 
weighting analogous to that described by Sim (1959). 
The probability of the phase a falling in the range 
a, a + da  is taken as 

P(a)da=Nexp[~-~--~cos(a-ac)]da,  

where Go is the currently accepted value of G, Gc is 
calculated from the refined map, ac is the phase of 
Go 2; is an estimate of the mean-square error in G~ 
and N is a normalizing factor (Stubbs, 1972; Blundell 
& Johnson, 1976, p. 419). £ can be estimated as 
( 2 2 Go- Gc), averaged within a range of resolution, but, 
because of the multi-dimensional nature of this prob- 
lem, this is a significantly low estimate. We therefore 
used a factor c so that 2; = c(G2o- G~). A satisfactory 
value of c (judged from the quality of the resulting 
maps) was found to be 20. 

3. Refinement of heavy-atom parameters 

The heavy-at0m parameters used at the beginning 
of this work were those determined by Stubbs, 
Warren & Holmes (1977). These parameters were 
refined using the least-squares method described for 
crystallography by Dickerson, Weinzierl & Palmer 
(1968). The relationship between the parameters and 
{G} is not identical to that between crystallographic 
parameters and {F}, but we have shown by model 
calculations analogous to those of Dickerson, Wein- 
zierl & Palmer that the algorithm works for cylindri- 
cally averaged data, provided that the starting phases 
are good enough. 

Table 1. Heavy-atom parameters 
For  fur ther  de ta i l s  of  the der ivat ives ,  see Stubbs,  War ren  & 

Holmes  (1977). 

Ligand 

MMN 
MMN 

pb 2÷ 

SHIMS-MNN 

UO2F5 

Strain 

Vulgate 
Ni-2068 

Vulgate 
Vulgare 

Vulgare 

OsO4 Vulgare 

f r ¢ z B 

88.4 57 .01  15-30 12"49 27.0 
96"6 56"96 15'27 12"42 37-2 
73'0 72-23 0-37 1.07 76"0 
29"5 24-75 6 " 5 4  20"62 57-4 
13.7 70"30  5"50  -1"29 50-0 
95.3 57.02 15.58 12"55 37-3 
96.2 57.20 15.24 12.44 35-2 
41.7 26"64  7.14 19 .72  86-9 
59-1 57 .91  22.46 25-98 107"9 
25'9 91"95 4.81 7"76 45.1 

One cycle of this algorithm consists of two steps: 
phase determination and least-squares-parameter 
refinement. The initial phases were calculated by 
multi-dimensional isomorphous replacement with 
layer-line splitting, and the most probable phase for 
each Bessel-order term was derived by two- 
dimensional isomorphous replacement with the sepa- 
ration of the terms calculated from this initial (A~}. 
At this stage, because of errors, A~(R) had discon- 
tinuities. Box-function refinement was applied to 
remove these discontinuities, and two-dimensional 
phasing was repeated. If the discontinuities persist, 
the box-function refinement should be repeated, but, 
in practice, (A~(R)} contained no major discon- 
tinuities by this point. Least-squares refinement of 
heavy-atom parameters was then based on this set. 
Three cycles of least-squares calculation were gent 
erally necessary for conver~gence. 

Data between 20 and 4 A resolution were used in 
the heavy-atom-parameter refinement, but data points 
whose residuals were in the highest 10% for any cycle 
were omitted from that cycle. Atomic positions and 
occupancies were refined. Temperature factors 
showed a tendency to take on unreasonably low 
values if they were allowed to vary freely, especially 
in the early stages of the work. In view of the compli- 
cated nature of the scaling surface, the scale 
coefficients were not refined. Instead, they were 
recalculated at intervals. 

An attempt was made to refine the parameters 
before the start of the phasing process. Although most 
of the parameters did refine to stable values, the 
electron density maps were not improved, and scaling 
of the data sets considering the heavy-atom contribu- 
tion served only to make them worse. In contrast, 
after the phasing process was complete and a model 
had been built, heavy-atom-parameter refinement 
based on two-dimensional isomorphous replacement 
with decomposition of I from the model worked very 
well (see below). At that point, scaling considering 
heavy atoms also began to improve the maps. It is 
clear that, in this system, heavy-atom-parameter 
refinement works, but only after sufficiently good 
starting phases have been obtained. 

The refined heavy-atom parameters are given in 
Table 1. 
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Calculation of a 3.6 ?, resolution map 

Using the methods described above, a map was calcu- 
lated from data extending to 3.6 A resolution. Figs. 
2(b)-(e) show a part of this map at various stages of 
refinement. For comparison, the 4 A map (Stubbs, 
Warren & Holmes, 1977) is shown in Fig. 2(a). 

(a) The first map (Fig. 2b) was calculated by multi- 
dimensional isomorphous replacement with layer- 
line splitting as described above. This map is already 
markedly superior to the 4 A map, partly because of 
the increased resolution, but primarily because five 
Bessel orders have been used, rather than three. The 
region of the map shown in Fig. 2 is near the outside 

of the TMV particle, and is therefore particularly 
sensitive to the omission of high-order Bessel terms. 

(b) A second map (Fig. 2c) was calculated by 
two-dimensional isomorphous replacement, taking 
the Bessel-order separations from (a). The map was 
improved in this step in several critical ways; in 
particular, the connectivity along the peptide chain 
was better, and therefore the interpretation was easier. 

(c) The phases in (b) showed discontinuities along 
the layer lines, so the box-function refinement pro- 
cedure was applied. 

(d) Two-dimensional isomorphous replacement 
phasing was used as in (b), taking Bessel-order separ- 
ations from (c), to calculate the map shown in Fig. 

(a) (b) 

(d) (e) 

(c) 

Fig. 2. Progressive improvement of the electron densitj¢ map at various early .stages of phase determination. The map shows an axial 
view of the outside part of the virus particle. A 4.2 A thick slice is shown with an approximate model (not the final refined model) 
of residues 130 to 150 superimposed to indicate the course of the protein chain. Note the improvement in chain continuity and the 
increasing clarity of the turns of ~x-helix in the top right corner of the map. (a) The map calculated in 1977 (Stubbs et aL, 1977) at 
4/~ resolution by multi-dimensional isomorphous replacement. Intensity data from the native virus and six heavy-atom derivatives 
were used. Contributions from up to three overlapping Bessel orders were considered. (b) The map at 3.6/~ resolution with 
contributions from five Bessel orders considered. Most of the improvement is due to the complete set of Bessel orders rather than 
the slight extension of resolution. Separation of the extra terms was made possible by considering the very fine splitting of the layer 
lines for the native and four of the six derivatives. (c) The map calculated by two-dimensional isomorphous replacement, taking the 
Bessel-order separations from (b) and using intensity data from the native and six heavy-atom derivatives. 'Best' phases were used. 
(d) The map after applying the box-function refinement to (c) and calculating two-dimensional isomorphous replacement phases. 
(e) The map after applying solvent-flattening refinement to (d) and calculating two-dimensional isomorphous replacement phases. 
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2(d). The mean phase change* between (b) and (d) 
was 29 ° . 

(e) Two cycles of solvent-flattening refinement 
were applied to the map from (d). 

(f)  The final map in this series (Fig. 2e) was calcu- 
lated by two-dimensional isomorphous replacement, 
taking the Bessel-order separation from (e). This time, 
however, the phases from solvent flattening were com- 
bined with the isomorphous replacement phases using 
the Sim weighting scheme described above. The mean 
phase change between (d) and (f)  was 16 °. 

The sequence of procedures used to calculate this 
map was determined largely by experiment and 
examination of the successive maps. As can be seen 
in Fig. 2, the quality of the map was improved at 
each step, with a large improvement overall. This 
improvement is also indicated in Fig. 3, where figures 
of merit from the two-dimensional isomorphous- 
replacement calculations are shown for different res- 
olution ranges. The greatest improvement in the 
figures of merit came with the solvent-flattening 
refinement, demonstrating that this procedure 
invokes a substantially stronger constraint than does 
the box-function refinement. 

Model building 

1. Initial model building 

A molecular model was built to fit the map partially 
shown in Fig. 2(e), using the Evans and Sutherland 
graphics system (models PS2 and MPS) and the pro- 
gram FRODO (Jones, 1982). Such models have been 
built before for the inner part of the protein in the 
intact virus (Stubbs, Warren & Holmes, 1977), for 
the RNA (Stubbs & Stauffacher, 1981), and for the 
outer part of the protein in the disk aggregate of the 
protein (Bloomer et al., 1978). All of these models 
were used as guides. Unlike the virus, the disk protein 
is disordered near the inner surface of the virus 
(residues 89-113). The main chain of the protein in 
the new model was extremely similar to that of the 
disk protein except in and near this region. The RNA 
model was only slightly changed from that of Stubbs 
& Stauffacher ( 1981). 

The low-radius loop (residues 90-110) was rather 
difficult to build at this stage, and required consider- 
able modification later in the refinement process, as 
the electron density map was initially rather noisy in 
this region. Nonetheless, it was possible to build an 
initial approximation to the loop, taking into account 
various constraints. These included charge interac- 
tions such as salt bridges, and the positions of the 
heavy atoms in the lead and uranyl fluoride deriva- 
tives. These atoms are believed to bind preferentially 
to carboxyl groups (Caspar, 1963; Blundell & 

* Mean phase change is defined in this case as the angle between 
the 2 N-dimensional vectors representing two different values of G. 

Johnson, 1976). Use was also made of a derivative 
of the rfiethionine mutant Ni 630 (Wittmann, 1962) 
with platinum; the occupancy was too low to permit 
the use of this derivative in the phasing, but a differ- 
ence Fourier map contained a clear single peak, which 
was tentatively interpreted as a platinum ion binding 
to Met 107. 

The crystallographic R factor for the initial model 
was 0.314 for data between 50 and 3-6 ]k resolution. 

2. Refinement of  the model 

Once the initial model had been built, structure 
factors were calculated from the atomic coordinates. 
The separation of the Bessel-order terms was taken 
from these structure factors and used to determine 
phases by two-dimensional isomorphous replace- 
ment, and the map from these phases was used to 
rebuild the model. This procedure was repeated five 
times, by which time the model was not changing 
significantly. After the first two such cycles, the heavy- 
atom parameters were refined again, the refinement 
being based on the most probable two-dimensional 
isomorphous replacement phase with Bessel-order 
separation from the model. 

During these five cycles of phase and model refine- 
ment, the R factor fell to 0.287. More significantly, 
the map improved greatly. Thi's is particularly well 
illustrated in Fig. 4, where we see the map and model 
at different stages of the refinement for a region 
including Ser 1, Trp 152, Thr 153 and Ser 154, on the 
outside surface of the particle. The improvement in 
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Fig. 3. Figures of merit at various stages of phase determination. 
O Phases corresponding to Fig. 2(c). A Phases corresponding 
to Fig. 2(d). O Two-dimensional isomorphous replacement 
phases after the solvent-flattening refinement had been applied 
to the map in Fig. 2(d). [] As ©, but with phase probabilities 
combined with phase probabilities from the solvent-flattening 
refinement. These phases correspond to Fig. 2(e). Overall figures 
of merit are O 0-56, A 0.56, ~ 0-68, [] 0-71. 
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(a) 

(b) 

_.....~-.---~ / 

(c) 

(d) 
Fig. 4. Progressive improvement of the electron density map as 

the model and the heavy-atom parameters were refined. The 
maps were calculated from the two-dimensional isomorphous 
replacement best phase, taking the Bessel-order separations from 
the current model. The figure shows the final conformations of 
some of the residues near the N and C termini, at the outside 
surface of the virus. (a) After one cycle of model building and 
phase calculation. (b) After two cycles of model building and 
,phase calculation. (c) After the second cycle, the heavy-atom 
parameters were refined and the phases were re-calculated. (d) 
After three cycles of model building and phase calculation. 

the electron density derives solely from rebuilding 
other parts of the model, since the density in this 
region was initially so poor that the model could not 
be modified to fit it. 

Although 3-6/~ is not usually considered to be 
sufficient resolution for the building of an atomic 
model, the examples shown in Fig. 5 show that after 
this extensive refinement process this map was indeed 
good enough to permit considerable confidence in 
the model. Fig. 5(a) shows an a-helical stretch of 
backbone, while Figs. 5(b) and (c) show side-chain 
interactions. 

3. Tests for bias in the map 

Since our refinement procedure depends on success- 
ive improvements in the model being incorporated 
into the Bessel-order separation (although not 
directly into the phasing of each term), it was of 
paramount importance to ensure that the apparent 
high quality of the map was not merely caused by 
bias towards the model. This is shown to some degree 
in Fig. 4, where the electron density near the N and 
C termini is shown at different stages of the refine- 
ment. The poor quality of the map in Fig. 4(a) shows 
that, at least in the initial phase calculation by two- 
dimensional isomorphous replacement, the influence 
of the unrefined model was not sufficient to produce 
an electron density map reflecting only the input 
model structure. This electron density improves con- 
siderably during the refinement, even though the cor- 
responding part of the model could not be adjusted 
significantly because of the poor quality of the density 
early in the refinement. The independence of the map 
is shown much more directly in Fig. 6, which illus- 
trates the effect of the model of the side chain of 
Tyr 70 on the electron density. The map calculated 
as described above, using two-dimensional isomor- 
phous replacement with Bessel-order separation from 
the entire model shows density corresponding to the 
side chain (Fig. 6a). A map calculated directly from 
the model without the side chain has, as expected, 
no density around the side chain (not shown). A 
difference Fourier map (Mandelkow, Stubbs & War- 
ren, 1981) shows a peak of density corresponding to 
the missing side chain (Fig. 6b). A map calculated 
with Bessel function separations from the partial 
model and with phases for each separate term from 
two-dimensional isomorphous replacement (Fig. 6c) 
agrees excellently with the map calculated from the 
full model, demonstrating that the phase information 
does not merely correspond to that contained in the 
current model. 

Discussion 

In this paper, we have repeatedly referred to the 
quality and interpretability of the map as the major 
criterion for assessing the value or otherwise of any 
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step in the refinement. The procedure has been some- 
what empirical so far; further experience with this 
and other structures will be needed before we can 
expect to establish the optimal methods for determin- 
ing a relatively large macromolecular structure at high 
resolution using fiber diffraction data. Nonetheless, 
we have obtained a highly interpretable map, and 
shown that it is not unduly biased towards the models 
used in its production. 

For several reasons, this map and model are sub- 
stantially improved from those described in 1977 
(Stubbs, Warren & Holmes), although the nominal 
resolution has improved only from 4 to 3.6/~. The 
data are better, particularly at high resolution, 
because the angular deconvolution procedure 
enabled us to make better estimates of intensities and 
backgrounds in the regions of substantial overlap of 
layer lines. The map is improved, particularly near 
the outer surface of the particle, because all five 
contributing Bessel terms were able to be considered, 
instead of only three. This was possible because of 
the use of layer-line splitting. Finally, the map was 
further improved by various refinement procedures, 
including two-dimensional isomorphous replace- 
ment, solvent flattening and the simultaneous refine- 
ment of the phases and the model described above. 

The methods described in this paper have many 
potential applications in fiber diffraction. Very few 
systems include such well-oriented specimens and 
such detailed diffraction patterns as does TMV, but 

there are many that could benefit to some degree by 
this approach. Work is currently in progress in this 
laboratory on several strains of TMV, some of which 
orient as well as TMV itself. While the structures of 
such strains could be solved by difference Fourier- 
Bessel syntheses (Mandelkow, Stubbs & Warren, 
1981), such difference syntheses are more biased 
towards the known structure in fiber diffraction than 
in crystallography. If one or two heavy-atom deriva- 
tives are available, two-dimensional isomorphous 
replacement can be used, taking the Bessel-order 
separation from the known structure. Our experience 
as described in this paper suggests that such a syn- 
thesis will be much less biased towards the TMV 
structure. 

The model to be used in separating the Bessel 
orders need not be derived from multi-dimensional 
isomorphous replacement, either directly or as a 
related structure. It could be a model derived by 
refinement of a trial structure, as in the case of 
filamentous bacteriophage pfl (Makowski, Caspar & 
Marvin, 1980), or even, at low resolution, simply a 
refined electron density map, as in the case of micro- 
tubules (Beese, Stubbs & Cohen, 1985). Thus the 
methods described here bring structures that have 
seemed intractable to isomorphous-replacement 
methods because of the difficulty of making deriva- 
tives, especially in large numbers, within reach. 

Little has been said in this paper about the actual 
structure we have determined for TMV. Details of 

(a) 

(c) 

~ ~ - ~  _~ 

(b) 

Fig. 5. Parts of the final electron density map with the final model superimposed. (a) Part of the right slewed a-helix (terminology 
according to Champness, Bloomer, Bricogne, Butler & Klug, 1976). (b) A salt bridge between Lys 53 and Glu 22. (c) Trp 17, Tyr 
70 and Tyr 72 in close proximity. 
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this will be publ ished elsewhere, but a few observa- 
tions are in order.  As a l ready  observed (Stubbs,  War- 
ren & Holmes,  1977; Bloomer et aL, 1978), the pept ide 
backbones-of  the virus structure and the disk structure 
are extremely similar except in the vicinity of  the 
R N A  and  inside the R N A  radius. With more  details 
visible, we find that  the mean  difference in posit ion 
for the main-cha in  atoms for the rest of  the structure 
is probably  less than 0.5 A,. However ,  there are many  
substantial  s ide-chain differences. Among  the largest 

l 

(a) 

(b) 

(c) . 
Fig. 6. Demonstration that the electron density map is not unduly 

biased towards the model. (a) A part of the final map showing 
Tyr 70. The map is calculated by two-dimensional isomorphous 
replacement, taking the Bessel-order separations from the entire 
model. (b) A difference Fourier map based on structure factors 
from the model without the side chain of Tyr 70. (c) A two- 
dimensional isomorphous replacement map, taking the Bessel- 
order separations from the model without the side chain of Tyr 
70. 

are those in the interface between successive turns of  
the virus helix or layers of  the disk. This interface is 
quite different even at a gross structural level, since 
the subunits  move by about  ha l f  the width of  one 
subunit  dur ing the disk-to-helix transition. In the disk, 
this interface includes a complex hydrogen-bonding  
network (Bloomer  et al., 1978). In the virus, a hydro-  
gen-bonding network has also been predicted 
(Stubbs, War ren  & Mande lkow,  1979). This ne twork 
has now been shown to exist, but  even at lower radius,  
where s ide-chain conformat ional  changes might  have 
been expected to be able to accommoda te  the change 
in qua te rnary  structure,  the specific hydrogen  bonds  
appear  (subject to the limitations of  interpretat ion of  
a 3.6 A. map)  to be quite different. 

This work was suppor ted  by N I H  grants G M  25236 
and G M  33265. Funds  to purchase  and main ta in  the 
VAX 11/780 computer  at Brandeis were from a N I H  
Shared Ins t rumenta t ion  Gran t  3-R01-GM21189-09S 1 
awarded  to D. J. DeRosier .  We thank  the European  
Molecular  Biology Labora tory  and the Depa r tmen t  
of  Biochemistry,  Co lumbia  University, for the use of  
computer  graphics  facilities, and Dr  Lee Makowski  
for critically reading the manuscript .  
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Abstract 

A method is presented that attempts to exploit all the 
a priori available information in order to locate a 
fragment of known geometry in the unit cell. Whereas 
the orientation of the search model is determined by 
a conventional but highly automated real-space Pat- 
terson rotation search, its position in the cell is found 
by maximizing the weighted sum of the cosines of a 
small number of strong translation-sensitive triple- 
phase invariants, starting from random positions. A 
Patterson minimum function based on intermolecular 
vectors is calculated only for those solutions that do 
not give rise to intermolecular contacts shorter than 
a preset minimum. This procedure avoids the time- 
consuming refinement in Patterson space and should 
be especially efficient for large structures. Finally, the 
best solutions are sorted according to a figure of merit 
based upon the agreement with the Patterson func- 
tion, the triple-phase consistency and an R index 
involving Eobs and Ecalc. Tests with about 30 known 
structures, using search fragments taken from other 
published structures or from f0rce-field calculations, 
have indicated that this novel combination of Patter- 
son and direct methods is reliable and widely applic- 
able. A few selected examples demonstrate the power 
of the computer program PATSEE, which is compat- 
ible with SHELX84 and will be distributed together 
with it. PATSEE is valid and efficient for all space 
groups and imposes no limits on the number of atoms 
or data. The orientation search for a single fragment 
allows one additional degree of torsional freedom, 
and up to two fragments may be translated simul- 
taneously. 

0108-7673/85/030262-07501.50 

Introduction 

The choice of strategy for the solution of a crystal 
structure at atomic resolution is usually determined 
by the presence or absence of heavy atoms. Thus it 
is common practice to solve light-atom structures with 
direct methods and those containing heavy atoms 
with Patterson techniques. If this (very often straight- 
forward) strategy fails, it may be advisable to resort 
to the corresponding alternative method: direct 
methods may well reveal the positions of heavy atoms, 
and the Patterson function can be interpreted even 
for purely light-atom structures, such as those of 
organic molecules, provided that part of the 
molecular geometry is known. This so-called Patter- 
son search has been shown by various authors to be 
a powerful tool for solving difficult crystal structures; 
its great strength is that it employs chemical informa- 
tion directly, and so can compensate for mediocre 
precision and resolution of the X-ray data (Egert, 
1983, and references cited therein). Nevertheless, it 
is not nearly as popular as direct methods, which owe 
part of their success to automation and superior com- 
putational efficiency. In this paper we describe an 
attempt to combine the merits of both methods- in  a 
manner that is generally applicable, efficient, auto- 
matic, computer independent and easy to u se - and  
thus to exploit all the a priori available information 
in order to solve large problem structures. 

Preparation of the search 

There are a number of different methods of perform- 
ing a Patterson search, but they all fall into one of 
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